arviz_stats.base.array_stats.loo#
- array_stats.loo(ary, chain_axis=-2, draw_axis=-1, r_eff=1.0, log_weights=None, pareto_k=None, log_jacobian=None)#
Compute Pareto-smoothed importance sampling leave-one-out cross-validation (PSIS-LOO-CV).
- Parameters:
- aryarray_like
Log-likelihood values.
- chain_axis
int, default -2 Axis for chains.
- draw_axis
int, default -1 Axis for draws.
- r_eff
float, default 1.0 Relative effective sample size.
- log_weightsarray_like, optional
Pre-computed PSIS log weights.
- pareto_karray_like, optional
Pre-computed Pareto k-hat diagnostic values.
- log_jacobianarray_like, optional
Log-Jacobian adjustment for variable transformations.
- Returns:
- elpd_iarray_like
Pointwise expected log predictive density.
- pareto_karray_like
Pareto k-hat diagnostic values.
- p_loo_iarray_like
Pointwise effective number of parameters.